Summary of Discounting Factors

		••••••		-	
Equation		Description	End of Period Cash Flow Discrete Discounting	End of Period Cash Flow, Continuous Discounting	Continuous or Uniform Cash Flow, Continuous Discounting
To Find	Given				
Р	F	Single Payment, Present Worth	(1+i) ⁻ⁿ	e ^{-r n}	
F	Ρ	Single Payment, Compound Amount	(1+i) ⁿ	e ^{rn}	
Р	A	Uniform Series, Present Worth	$\frac{(1+i)^n-1}{i(1+i)^n}$	$\frac{e^{rn}-1}{e^{rn}(e^{r}-1)}$ or $\frac{1-e^{-rn}}{e^{r}-1}$	$rac{e^{rn}-1}{re^{rn}}$ or $rac{1-e^{-rn}}{r}$
A	Р	Uniform Series, Capital Recovery	$\frac{i(1+i)^{n}}{(1+i)^{n}-1}$	$\frac{e^{rn}(e^{r}-1)}{e^{rn}-1} \text{ or } \frac{e^{r}-1}{1-e^{-rn}}$	$rac{re^{rn}}{e^{rn}-1}$ or $rac{r}{1-e^{-rn}}$
F	A	Uniform Series, Compound Amount	$\frac{(1+i)^n-1}{i}$	$\frac{e^{rn}-1}{e^r-1}$	$\frac{e^{rn}-1}{r}$
A	F	Uniform Series, Sinking Fund	$\frac{i}{(1+i)^{n}-1}$	$\frac{e^{r}-1}{e^{rn}-1}$	$\frac{r}{e^{rn}-1}$
Р	G	Gradient Series, Present Worth	$\frac{[1-(1+ni)(1+i)^{-n}]}{i^2}$	$\frac{e^{rn} - 1 - n(e^r - 1)}{e^{rn}(e^r - 1)^2}$	$\frac{e^m - 1 - n(e^r - 1)}{re^m(e^r - 1)}$
A	G	Gradient Series Conversion to Uniform Series	$\frac{(1+i)^n - (1+ni)}{i[(1+i)^n - 1]}$	$\frac{1}{e^{r}-1}-\frac{n}{e^{rn}-1}$	$\frac{1}{e^{r}-1}-\frac{n}{e^{rn}-1}$
Р	A ₁ , j or c, i≠j or r≠c	Geometric Series, Present Worth	$\frac{1 - (1 + j)^n (1 + i)^{-n}}{i - j}$	$\frac{1 - e^{(c-r)n}}{e^r - e^c}$	$\frac{e^{(r-c)n}-1}{(r-c)e^{(r-c)n}} \text{ or } \frac{1\!-\!e^{(c\text{-}r)n}}{r-c}$
Р	A ₁ , j or c, i=j or r=c		n (1+i)	n e ^r	n
F	A ₁ , j or c, i≠j or r≠c	Geometric Series, Future Worth	$\frac{(1+i)^n - (1+j)^n}{i-j}$	$\frac{\mathbf{e}^{\mathrm{rn}}-\mathbf{e}^{\mathrm{cn}}}{\mathbf{e}^{\mathrm{r}}-\mathbf{e}^{\mathrm{c}}}$	$\frac{\mathbf{e}^{rn} - \mathbf{e}^{cn}}{r-c}$
F	A ₁ , j or c, i=j or r=c	1	n(1+i) ⁿ⁻¹	ne ^{r(n-1)}	ne ^m

P = Present Worth, F = Future Worth, A = annual amount, A₁ = annual amount 1st year of geometric series, G = gradient amount, i = discount or interest rate, r = continuous discount or interest rate, j = discrete compounding geometric growth rate, c = continuous compounding geometric growth rate Relationship of i to r and j to c: $i_{effective} = e^r - 1$ and $j_{effective} = e^c - 1$

 $r = ln(1 + i_{effective})$ and $c = ln(1 + j_{effective})$