Summary of Discounting Factors

Equation		Description	End of Period Cash Flow Discrete Discounting	End of Period Cash Flow, Continuous Discounting	Continuous or Uniform Cash Flow, Continuous Discounting
To Find	Given				
P	F	Single Payment, Present Worth	$(1+i)^{-n}$	$e^{-r n}$	
F	P	Single Payment, Compound Amount	$(1+i)^{n}$	$e^{r n}$	
P	A	Uniform Series, Present Worth	$\frac{(1+i)^{n}-1}{i(1+i)^{n}}$	$\frac{e^{r n}-1}{e^{r n}\left(e^{r}-1\right)} \text { or } \frac{1-e^{-r n}}{e^{r}-1}$	$\frac{e^{r n}-1}{r e^{r n}} \text { or } \frac{1-e^{-r n}}{r}$
A	P	Uniform Series, Capital Recovery	$\frac{i(1+i)^{n}}{(1+i)^{n}-1}$	$\frac{e^{r n}\left(e^{r}-1\right)}{e^{r n}-1} \text { or } \frac{e^{r}-1}{1-e^{-r n}}$	$\frac{r e^{r n}}{e^{r n}-1} \text { or } \frac{r}{1-e^{-r n}}$
F	A	Uniform Series, Compound Amount	$\frac{(1+i)^{n}-1}{i}$	$\frac{\mathrm{e}^{r n}-1}{\mathrm{e}^{r}-1}$	$\frac{e^{r n}-1}{r}$
A	F	Uniform Series, Sinking Fund	$\frac{i}{(1+i)^{n}-1}$	$\frac{\mathrm{e}^{r}-1}{\mathrm{e}^{r n}-1}$	$\frac{r}{e^{r n}-1}$
P	G	Gradient Series, Present Worth	$\frac{\left[1-(1+n i)(1+i)^{-n}\right]}{i^{2}}$	$\frac{e^{r n}-1-n\left(e^{r}-1\right)}{e^{r n}\left(e^{r}-1\right)^{2}}$	$\frac{e^{r n}-1-n\left(e^{r}-1\right)}{r e^{r n}\left(e^{r}-1\right)}$
A	G	Gradient Series Conversion to Uniform Series	$\frac{(1+i)^{n}-(1+n i)}{i\left[(1+i)^{n}-1\right]}$	$\frac{1}{e^{r}-1}-\frac{n}{e^{r n}-1}$	$\frac{1}{e^{r}-1}-\frac{n}{e^{r n}-1}$
P	A_{1}, j or $c, i \neq j$ or $r \neq c$	Geometric Series, Present Worth	$\frac{1-(1+j)^{n}(1+i)^{-n}}{i-j}$	$\frac{1-e^{(c-r) n}}{e^{r}-e^{c}}$	$\frac{e^{(r-c) n}-1}{(r-c) e^{(r-c) n}} \text { or } \frac{1-e^{(c-r) n}}{r-c}$
P	A_{1}, j or $\mathrm{c}, \mathrm{i}=\mathrm{j}$ or $\mathrm{r}=\mathrm{c}$		$\frac{\mathrm{n}}{(1+\mathrm{i})}$	$\frac{\mathrm{n}}{\mathrm{e}^{r}}$	n
F	A_{1}, j or $c, i \neq j$ or $r \neq c$	Geometric Series, Future Worth	$\frac{(1+\mathrm{i})^{\mathrm{n}}-(1+\mathrm{j})^{\mathrm{n}}}{\mathrm{i}-\mathrm{j}}$	$\frac{e^{r n}-e^{c n}}{e^{r}-e^{c}}$	$\frac{e^{r n}-e^{c n}}{r-c}$
F	A_{1}, j or $\mathrm{c}, \mathrm{i}=\mathrm{j}$ or $\mathrm{r}=\mathrm{C}$		$\mathrm{n}(1+\mathrm{i})^{\mathrm{n}-1}$	$n e^{r(n-1)}$	$n e^{\text {rm }}$

$\mathrm{P}=$ Present Worth, $\mathrm{F}=$ Future Worth, $\mathrm{A}=$ annual amount, $\mathrm{A}_{1}=$ annual amount $1^{\text {st }}$ year of geometric series, $\mathrm{G}=$ gradient amount, $\mathrm{i}=$ discount or interest rate, $\mathrm{r}=$ continuous discount or interest rate,
$j=$ discrete compounding geometric growth rate, $c=$ continuous compounding geometric growth rate Relationship of i to r and j to $c:$ ieffective $=e^{r}-1$ and jeffective $=e^{c}-1$
$r=\ln \left(1+\mathrm{i}_{\text {effective }}\right)$ and $\mathrm{c}=\ln \left(1+\mathrm{j}_{\text {effective }}\right)$

